
Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Safe Dynamic Memory Management in Ada and
SPARK

Maroua Maalej, Tucker Taft, Yannick Moy

AdaCore

Ada-Europe
June 19, 2018

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 1/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Why Try To Verify Use of Pointers?

I Automatic storage management

I Control “unknown” aliasing of names

I Use pointers in SPARK for formal verification

How?

I Implement a variant of pointer Ownership

7→ Inspired from Rust
7→ Concurrent-Read-Exclusive-Write (CREW) policy

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 2/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Quick Reminder 1/2

I Named types:

type Int Ptr is access Integer;
X : Int Ptr;

I Anonymous types:

Y : access Integer;

I General access types

type Int Cst Ptr is access constant Integer;
type Int Cst Ptr is access all Integer;

I Pool-specific access types

; No general access modifier appears

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 3/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Quick Reminder 2/2

I Access types

X : Int Ptr;

I Composite types

type Rec is record

Data : Int Ptr;
end record

I By-copy types

Parameter passed by copy

I By-reference types

Parameter passed by reference: a view on the actual parameter

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 4/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Motivating Example: Swap Pointers

1 t y p e I n t P t r i s a c c e s s I n t e g e r ;
2

3 p r o c e d u r e Swap (X Param , Y Param : i n o u t I n t P t r) i s
4 Tmp : I n t P t r := X Param ;
5 b e g i n
6 X Param := Y Param ;
7 Y Param := Tmp ;
8 end Swap ;
9

10 X : I n t P t r := new I n t e g e r ;
11 Y : I n t P t r := new I n t e g e r ;
12

13 Swap (X, Y) ;

Dangling refs?

Storage leaks?

Correct result?

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 5/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Pointer Ownership: Overview

Idea: No more than one “owning” pointer to a given object

Constraints: I Composite types are by-reference types

; Always passed by reference

I Access types are pool-specific types

; Cannot point to stack

Goal: Automatic storage management

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 6/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Pointer Ownership: Overview

Idea: No more than one “owning” pointer to a given object

Constraints: I Composite types are by-reference types

; Always passed by reference

I Access types are pool-specific types

; Cannot point to stack

Goal: Automatic storage management

Operations

I Move → complete transfer of the ownership

I Borrow → temporary transfer of the ownership

I Observe → no owning object

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 6/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Pointer Ownership: Overview

Idea: No more than one “owning” pointer to a given object

Constraints: I Composite types are by-reference types

; Always passed by reference

I Access types are pool-specific types

; Cannot point to stack

Goal: Automatic storage management

Operations

I Move

I Borrow

I Observe

Objects states

I Unrestricted ⇒ Read Write

I Observed ⇒ Read Only

I Borrowed ⇒ No

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 6/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Contents

1 Moving Operations

2 Borrowing Operations

3 Observing Operations

4 Formal Verification in SPARK

5 Conclusion

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 7/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Moving Operations

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 8/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Moving Access Values

When: Assignment to named

I variables or return objects

I parameters of mode out/in-out

Example:
Y : Int Ptr;
X : Int Ptr := Y;

Conditions
I X, Y of named type

I X, Y unrestricted

Results
I X unrestricted

I Old storage of X deallocated

I Y unrestricted, null

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 9/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Moving Composite Types

When: Assignment to

I variables or return objects

I parameters of mode out/in-out

Example:
R : Rec := (. . .);
S : Rec := (. . .);
S := R;

Conditions
I R, S unrestricted

Results
I S unrestricted

I Old S components deallocated

I R unrestricted; components null

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 10/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Borrowing Operations

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 11/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Borrowing Access Values

When: Initializing

I in parameters
I stand-alone anonymous objects
I constants

of an access-to-variable type

Example:
procedure f(X Param : in Int Ptr);
f(X);

Conditions
I X Param of mode in;

access-to-variable type

I X unrestricted

Results
I X Param unrestricted

I X borrowed

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 12/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Borrowing Access Values

When: Initializing

I in parameters
I stand-alone anonymous objects
I constants

of an access-to-variable type

Example:
procedure f(X Param : in Int Ptr);
f(X);

Conditions
I X Param of mode in;

access-to-variable type

I X unrestricted

Results
I X Param unrestricted

I X borrowed

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 12/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Borrowing Access Values

When: Initializing

I in parameters
I anonymous stand-alone objects
I constants

of an access-to-variable type

Example:
X : access Integer := Y

Conditions
I X of an anonymous

access-to-variable type

I Y unrestricted

Results
I X unrestricted

I Y borrowed

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 13/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Borrowing Access Values

When: Initializing

I in parameters
I anonymous stand-alone objects
I constants

of an access-to-variable type

Example:
X : access Integer := Y

Conditions
I X of an anonymous

access-to-variable type

I Y unrestricted

Results
I X unrestricted

I Y borrowed

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 13/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Borrowing Composite Objects

When: Passing parameters of mode out or in-out

Example:
procedure f(X Param : in out Rec);
f(X);

Conditions
I X Param of mode in-out

I X passed by-reference

Results
I X Param unrestricted

I X borrowed

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 14/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Observing Operations

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 15/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Observing Access Values

When: Initializing

I in parameters

I anonymous stand-alone objects

of an access-to-constant type

Example:
X : access constant Integer := Y;

Conditions
I X of an anonymous

access-to-constant type

I Y unrestricted or observed

Results
I X observed → Read Only

I Y observed → Read Only

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 16/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Observing Access Values

When: Initializing

I in parameters

I anonymous stand-alone objects

of an access-to-constant type

Example:
X : access constant Integer := Y;

Conditions
I X of an anonymous

access-to-constant type

I Y unrestricted or observed

Results
I X observed → Read Only

I Y observed → Read Only

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 16/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Observing Composite Types

When: Initializing

I constant stand-alone objects

I parameters of mode in

Example:
procedure f(X Param : in Rec);
f(X);

Conditions
I X Param of mode in

I X passed by-reference

Results
I X Param observed → RO

I X observed → RO

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 17/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Observing Composite Types

When: Initializing

I constant stand-alone objects

I parameters of mode in

Example:
procedure f(X Param : in Rec);
f(X);

Conditions
I X Param of mode in

I X passed by-reference

Results
I X Param observed → RO

I X observed → RO

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 17/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Example Cont’d: Swap Pointers

1 t y p e I n t P t r i s a c c e s s I n t e g e r ;
2

3 p r o c e d u r e Swap (X Param , Y Param : i n o u t I n t P t r) i s

4 Tmp : Int Ptr := X Param ;

5 b e g i n

6 X Param := Y Param ;

7 Y Param := Tmp ;

8 end Swap ;
9

10 X : I n t P t r := new I n t e g e r ;
11 Y : I n t P t r := new I n t e g e r ;
12

13 Swap (X , Y) ;

Tmp is the new owning object
; No dangling reference, cannot dereference the old value of

X Param
Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 18/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Formal Verification in SPARK

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 19/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

SPARK - What it is?

I A programming language
I A subset of Ada, designed for static verification
I Additional features to enhance program specification

Additional
SPARK
aspects

Core
language
common to
Ada and
SPARK

Ada Features
outside the
SPARK
subset

Ada SPARK

I A set of program verification tools

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 20/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Why Aliasing Matters in SPARK?

1 t y p e I n t P t r i s a c c e s s I n t e g e r ;
2

3 p r o c e d u r e Add One (X Param , Y Param : i n I n t P t r) w i th
4 P o s t => X Param . a l l = X Param . a l l ’ Old + 1
5 and Y Param . a l l = Y Param . a l l ’ Old + 1
6 i s
7 b e g i n
8 X Param . a l l := X Param . a l l + 1 ;
9 Y Param . a l l := Y Param . a l l + 1 ;

10 end Add One ;

If SPARK ignored aliasing:

1 X : I n t P t r := new I n t e g e r ’ (3) ;
2 (. . .)
3

4 Add One (X, X) ;
5 pragma A s s e r t (X. a l l = 4) ; −− i n c o r r e c t a s s e r t i o n

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 21/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Why Aliasing Matters in SPARK?

1 t y p e I n t P t r i s a c c e s s I n t e g e r ;
2

3 p r o c e d u r e Add One (X Param , Y Param : i n I n t P t r) w i th
4 P o s t => X Param . a l l = X Param . a l l ’ Old + 1
5 and Y Param . a l l = Y Param . a l l ’ Old + 1
6 i s
7 b e g i n
8 X Param . a l l := X Param . a l l + 1 ;
9 Y Param . a l l := Y Param . a l l + 1 ;

10 end Add One ;

If SPARK ignored aliasing:

1 X : I n t P t r := new I n t e g e r ’ (3) ;
2 (. . .)
3

4 Add One (X, X) ;
5 pragma A s s e r t (X. a l l = 4) ; −− i n c o r r e c t a s s e r t i o n

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 21/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

With Ownership Types: Alias

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 22/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

With Ownership Types: Alias

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 23/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

With Ownership Types: Alias Free

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 24/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Conclusion

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 25/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Conclusion

Pointer Ownership Approach

I Inspired from Rust

I Safe pointers w.r.t to CREW policy: full ownership
(read/write access); partial ownership (read-only access)

Pointer Ownership Goals

I For Ada
I No storage leaks
I No dangling references

I For SPARK
I No hidden aliasing 7→ Can verify correctness of algorithms

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 26/28

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Supporting Pointers in SPARK: Steps

2017 2018 2019 2020

Bor
ro

win
g

Saf
e

Poi
nte

rs

Fro
m

Rust
to

SPARK
1

SPARK
For

m
al

Ver
ifi

ca
tio

n:

Pro
to

ty
pe

SPARK
For

m
al

Ver
ifi

ca
tio

n:

In
Pro

duct
io

n

Acc
es

s
Val

ue
O

wner
sh

ip
2

Ada
20

20
?

1Georges-Axel Jaloyan, Yannick Moy, and Andrei Paskevich.
Borrowing Safe Pointers From Rust in SPARK. 2017. url:
https://arxiv.org/abs/1805.05576.

2AdaCore. Access value ownership and parameter aliasing. 2018. url:
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0240-1.txt.

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 27/28

https://arxiv.org/abs/1805.05576
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0240-1.txt

Moving Operations Borrowing Operations Observing Operations Formal Verification in SPARK Conclusion

Questions?

Safe Dynamic Memory Management in Ada and SPARK Maroua Maalej 28/28

	Moving Operations
	Borrowing Operations
	Observing Operations
	Formal Verification in SPARK
	Conclusion

